

The 11th Conference on Reactor Materials Science at JSC SSC RIAR

May 27–31, 2019

RITM-200 Reactor Core for Small-Sized NPPs

Authors: A. A. Zakharychev, V.Yu. Papotin, D.M. Stadnik

JSC "Afrikantov OKBM", Nizhny Novgorod, Russia

A. A. Sheldyakov

JSC SSC RIAR, Dimitrovgrad, Russia

S. I. Korovushkin

MSZ, JSC, Elektrostal, Russia

Assigned Characteristics

Characteristics	Values	
	Option 1	Option 2
Rated power, MW	175	165
Average operation power, %N _{rated}	95	
Refueling interval, years	~5	~6-7
Stored energy, TW-h	7.0	8.0
Life time, h	40,000	48,500
Core height, mm	1,650	
Number of FAs, pcs.	199	
Enrichment in U-235, %	< 20	

Design Characteristics

An analogue reactor core: KLT-40S reactor core for a floating power unit (FPU)

A reactor core similar in design: RITM-200 reactor core designed for a

multipurpose nuclear icebreaker (MNI)

Characteristics	SNPP	MNI	FPU
Core circumscribed diameter, mm	1566		1220
Core height, mm	1650	1200	1200
FA arrangement pitch, mm	101		100
Number of FAs, pcs.	199		121
Number of drive mechanisms of compensating group rods, pcs.	12		8
Number of drive mechanisms of safety rods, pcs.	6		3

Characteristics of SNPP Reactor Core

Characteristics		Value	
		Option 2	
Number of fuel rods, pcs.	13692	13638	
Uranium-235 load, kg	563.2	697.8	
Mass fraction of Uranium-235 in Uranium, %:			
- maximum	19.4	19.6	
- average	19.0	19.3	
Maximum fission-product build-up, g/cm ³	1.011.0 5	1.04	
Maximum neutron flux with E≥0.1 MeV, 10 ²² N/cm ²	2.31	2.6	
Maximum linear heat rate, W/cm	180	195	
Coolant pressure, MPa	15.7		
Coolant temperature at core inlet/outlet °C	277/242	277/242	

Fuel Assembly

Element Inventory

Characteristics	SNPP	MNI	FPU
Overall length, mm	2124 1674		
Shroud			
Width across flats, mm	98.5		
thickness, mm	1.65		
material	E110		
Fuel type	Cermet fuel	Intermetallic fuel	Cermet fuel
Fuel rod and burnable poison rod			
overall length, mm	1725	1275	1275
fuel rod diameter/clad thickness, mm	6.9/0.3	6.9/0.25	6.8/0.5
clad material	42CrNiMo	42CrNiMo	E110
Absorber of burnable poison rod	Gd-Nb-Zr composition		
Absorber element			
design	Ring-type		Cluster-type
clad material	42CrNiMo		
absorber	Born carbide/ Dysprosium titanate		

Reactor Core. Component Parts

Design Base

Fuel assembly

14-14

- Lifetime -21000 hours;
- Burnup -0.75 g/cm^{3*} ;
- Linear heat rate 298 W/cm*;
- Fluence $-1.4 \cdot 10^{22} \text{ cm}^{-2}$
- Fuel cermet
- -Fuel rod with cladding of E110 alloy with swell compensator

Mechanics, Physics, Thermal Hydraulics

14-15-1

- Lifetime -75000 hours;
- Burnup -1.12 g/cm^{3*} ;
- Linear heat rate 379 W/cm*;
- Fluence $-1.77 \cdot 10^{22} \text{ cm}^{-2}$
- Fuel intermetallic
- Fuel rod with cladding of
- 42CrNiMo alloy with swell

compensator

SNPP with RITM-200 Reactor

- Lifetime 48500 hours;
- Burnup -1.04 g/cm^3 ;
- Linear heat rate 195 W/cm;
- Fluence $-2.6 \cdot 10^{22} \text{ cm}^{-2}$
- Fuel cermet
- Fuel rod with cladding of 42CrNiMo
- alloy with swell compensator

Cladding

Fuel

PTVS 31-M

- Burnup -1.05 g/cm^3 ;
- Linear heat rate 280 W/cm;
- Fuel cermet
- Fuel rod with cladding of 42CrNiMo alloy with swell
- compensator

Fuel Irradiation Facility

- Burnup -1.02 g/cm^3 ;
- Linear heat rate 270 W/cm:
- Fuel cermet
- Fuel rod with cladding of E110 with swell compensator

PTVS 14-14

- Burnup -0.82 g/cm^3 ;
- Linear heat rate -250 W/cm:
- Fuel cermet
- Fuel rod with cladding of E110 alloy with swell compensator

^{*} Justified in the Fuel Rod Final Design

Fuel Rod of Extended Length

Fuel rods designed for FPU

Optimization of production processes aimed at fuel charging into the fuel rod with increased active fuel length

- Equipment has been purchased
- Production line has been mounted
- WDD on fuel rod mockups has been developed
- Fuel rod charging process starts in May 2019

- Optimization of component parts manufacturing process
- Optimization of fuel rod manufacturing
- Optimization of fuel rod inspection
- Manufacturing of fuel rod mockups
- Manufacturing of pilot fuel rods

Irradiation Testing in the MIR Reactor and Post-Irradiation Examination

1

• The GIRLYANDA irradiation device and PTVS 14-14 charged with cermet fuel have made the way for the cermet fuel composition (the performed materials research activities and the test results have justified that the cermet fuel erosion-corrosion resistance is at any rate no worse than that of the intermetallic fuel)

7

• The loop fuel assembly PTVS-75 has demonstrated that it is impossible to arrange fuel rods in the angular cells behind the spacing angle piece in fuel assembly structure

2

- The loop fuel assembly PTVS-31M has demonstrated:
- that it is possible to achieve the maximum burnup of at least 1.05 g/cm³ in cermet fuel composition
- a number of advantages of the steel compensator over the zirconium one.

SSC RIAR Objectives

1

•Post-Irradiation Examination of PTVS-31M have raised a number of issues which require additional studies.

2

• Examination of irradiated fuel rods in PTVS-31M under emergency conditions.

2

- Pilot-scale irradiation testing aimed at:
 - selecting optimal fuel rod cladding;
 - selecting optimal compensator;
 - switching over to higher fuel burnup.

R&D List

Optimize manufacturing technology of long fuel rods and FA component parts

Conduct FA tests:

- Mechanical tests
- Life time and hydraulic tests
- Thermal tests
- Irradiation-mechanical tests
- Thermal cyclic tests

Develop the reactor core final design

Verify and validate neutronic analysis codes and thermal hydraulic analysis codes

Develop final designs of the reactor core fuel elements

Thank You For Your Attention!